Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Biomark Res ; 12(1): 35, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515166

RESUMO

Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.

2.
BMC Immunol ; 25(1): 20, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515019

RESUMO

BACKGROUND: The human interleukin-17 (IL-17) family comprises IL-17A to IL-17 F; their receptors are IL-17RA to IL-17RE. Evidence revealed that these cytokines can have a tumor-supportive or anti-tumor impact on human malignancies. The purpose of this study was to assess the expression of CXCR2, IL-17RA, and IL-17RC genes at the mRNA level as well as tissue and serum levels of IL-17A, vascular endothelial growth factor (VEGF), and transforming growth factor ß (TGF-ß) in patients with bladder cancer (BC) compared to control. RESULTS: This study showed that gene expression of IL-17RA, IL-17RC, and CXCR2 in the tumoral tissue of BC patients was significantly upregulated compared with normal tissue. The findings disclosed a significant difference in the serum and tissue concentrations of IL-17A, VEGF, and TGF-ß between the patient and the control groups, as well as tumor and normal tissues. CONCLUSION: This study reveals notable dysregulation of CXCR2, IL-17RA, and IL-17RC genes, alongside changes in IL-17A, VEGF, and TGF-ß levels in patients with BC than in controls. These findings indicate their possible involvement in BC development and their potential as diagnostic and therapeutic targets.


Assuntos
Interleucina-17 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , 60489 , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Quimiocinas , Neoplasias da Bexiga Urinária/genética , Fator de Crescimento Transformador beta
3.
Front Immunol ; 15: 1283364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357542

RESUMO

Introduction: Pancreatic cancer is a truculent disease with limited treatment options and a grim prognosis. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness in pancreatic cancer has been lacking. As a result, it is crucial to identify markers associated with immunological pathways in order to improve the treatment outcomes for this deadly cancer. The purpose of this study was to investigate the diagnostic and prognostic significance of three markers, CD8, CD68, and VISTA, in pancreatic ductal adenocarcinoma (PDAC), the most common subtype of pancreatic cancer. Methods: We analyzed gene expression data from Gene Expression Omnibus (GEO) database using bioinformatics tools. We also utilized the STRING online tool and Funrich software to study the protein-protein interactions and transcription factors associated with CD8, CD68, and VISTA. In addition, tissue microarray (TMA) and immunohistochemistry (IHC) staining were performed on 228 samples of PDAC tissue and 10 samples of normal pancreatic tissue to assess the expression levels of the markers. We then correlated these expression levels with the clinicopathological characteristics of the patients and evaluated their survival rates. Results: The analysis of the GEO data revealed slightly elevated levels of VISTA in PDAC samples compared to normal tissues. However, there was a significant increase in CD68 expression and a notable reduction in CD8A expression in pancreatic cancer. Further investigation identified potential protein-protein interactions and transcription factors associated with these markers. The IHC staining of PDAC tissue samples showed an increased expression of VISTA, CD68, and CD8A in pancreatic cancer tissues. Moreover, we found correlations between the expression levels of these markers and certain clinicopathological features of the patients. Additionally, the survival analysis revealed that high expression of CD8 was associated with better disease-specific survival and progression-free survival in PDAC patients. Conclusion: These findings highlight the potential of CD8, CD68, and VISTA as diagnostic and prognostic indicators in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T CD8-Positivos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Fatores de Transcrição , Antígenos CD8/metabolismo
4.
Adv Rheumatol ; 64(1): 11, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268022

RESUMO

BACKGROUND: Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. METHODS: In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. RESULTS: Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. CONCLUSIONS: The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.


Assuntos
Interleucina-17 , Osteoartrite do Joelho , Humanos , Gravidade do Paciente , Índice de Massa Corporal , Citocinas
5.
Crit Rev Oncol Hematol ; 193: 104200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981104

RESUMO

IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.


Assuntos
Neoplasias Gastrointestinais , Proteína Acessória do Receptor de Interleucina-1 , Humanos , Receptores de Interleucina-1 , Interleucina-1/uso terapêutico , Imunoterapia , Microambiente Tumoral
6.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647347

RESUMO

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Granzimas/metabolismo , Leptina/metabolismo , Imunidade Celular , Fator de Crescimento Transformador beta/metabolismo , Interferon gama/metabolismo , Modelos Animais , Neoplasias/metabolismo , Interleucina-12 , Vacinas/metabolismo , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo
7.
Adv Rheumatol ; 64: 11, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550010

RESUMO

Abstract Background Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. Methods In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. Results Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. Conclusions The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.

8.
Inflammopharmacology ; 31(6): 3005-3020, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805959

RESUMO

The pathogenesis of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2), is complex and involves dysregulated immune responses, inflammation, and coagulopathy. Purinergic signaling, mediated by extracellular nucleotides and nucleosides, has emerged as a significant player in the pathogenesis of COVID-19. Extracellular adenosine triphosphate (ATP), released from damaged or infected cells, is a danger signal triggering immune responses. It activates immune cells, releasing pro-inflammatory cytokines, contributing to the cytokine storm observed in severe COVID-19 cases. ATP also promotes platelet activation and thrombus formation, contributing to the hypercoagulability seen in COVID-19 patients. On the other hand, adenosine, an immunosuppressive nucleoside, can impair anti-viral immune responses and promote tissue damage through its anti-inflammatory effects. Modulating purinergic receptors represents a promising therapeutic strategy for COVID-19. Understanding the role of purinergic signaling in COVID-19 pathogenesis and developing targeted therapeutic approaches can potentially improve patient outcomes. This review focuses on the part of purinergic signaling in COVID-19 pathogenesis and highlights potential therapeutic approaches targeting purinergic receptors.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Trifosfato de Adenosina , Adenosina , Receptores Purinérgicos
9.
Cell Commun Signal ; 21(1): 261, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749597

RESUMO

Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.


Assuntos
Exossomos , Vesículas Extracelulares , Viroses , Humanos , Células Matadoras Naturais , Comunicação Celular
10.
Front Endocrinol (Lausanne) ; 14: 1139692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654571

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.


Assuntos
COVID-19 , Adulto , Idoso , Humanos , COVID-19/complicações , SARS-CoV-2 , Fígado , Envelhecimento , Citocinas
11.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705281

RESUMO

Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 µg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 µg/mL dose. The obtained results show that A1 (at a concentration of 40 µg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 µg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.

12.
Biomed Pharmacother ; 167: 115557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757491

RESUMO

Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.

13.
Int Immunopharmacol ; 122: 110470, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37433246

RESUMO

Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/patologia , Vírus Oncolíticos/genética , Microambiente Tumoral , Replicação Viral
14.
Int Immunopharmacol ; 119: 110246, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148769

RESUMO

Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Dermatopatias , Humanos , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Estresse Oxidativo , Imunossupressores
15.
Med Oncol ; 40(6): 179, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188900

RESUMO

Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and "ML221 + DC vaccine". After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-ß), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin-eosin staining. The efficiency of combination therapy with "ML221 + DC vaccine" was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-ß in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Animais , Feminino , Camundongos , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Neoplasias da Mama/terapia , Células Dendríticas/metabolismo , Fator 2 de Crescimento de Fibroblastos , Interleucina-9 , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Fator de Crescimento Transformador beta , Eficácia de Vacinas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Adv Med Sci ; 68(1): 157-168, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003235

RESUMO

PURPOSE: Prostaglandin E2 (PGE2), a product of cyclooxygenase (COX) pathway of arachidonic acid, exerts inhibitory impacts on dendritic cell (DC) activity to repress anti-tumor immune responses. Therefore, targeting COX during DC vaccine generation may enhance DC-mediated antitumor responses. We aimed to investigate the impacts of DC vaccine treated with celecoxib (CXB), a selective COX2 inhibitor, on some T cell-related parameters. MATERIALS AND METHODS: Breast cancer (BC) was induced in BALB/c mice, and then they received DC vaccine treated with lipopolysaccharide (LPS-mDCs), LPS with a 5 â€‹µM dose of CXB (LPS/CXB5-mDCs) and LPS with a 10 â€‹µM dose of CXB (LPS/CXB10-mDCs). The frequency of splenic Th1 and Treg cells and amounts of IFN-γ, IL-12 and TGF-ß production by splenocytes, as well as, the expression of Granzyme-B, T-bet and FOXP3 in tumors were determined using flow cytometry, ELISA, and real-time PCR, respectively. RESULTS: Compared with untreated tumor group (T-control), treatment with LPS/CXB5-mDCs and LPS/CXB10-mDCs decreased tumor growth (P â€‹= â€‹0.009 and P â€‹< â€‹0.0001), escalated survival rate (P â€‹= â€‹0.002), increased the frequency of splenic Th1 cells (P â€‹= â€‹0.0872, and P â€‹= â€‹0.0155), increased the IFN-γ (P â€‹= â€‹0.0003 and P â€‹= â€‹0.0061) and IL-12 (P â€‹= â€‹0.001 and P â€‹= â€‹0.0009) production by splenocytes, upregulated T-bet (P â€‹= â€‹0.062 and P â€‹< â€‹0.0001) and Granzyme-B (P â€‹= â€‹0.0448 and P â€‹= â€‹0.4485), whereas decreased the number of Treg cells (P â€‹= â€‹0.0014, and P â€‹= â€‹0.0219), reduced the amounts of TGF-ß production by splenocytes (P â€‹= â€‹0.0535 and P â€‹= â€‹0.0169), and reduced the expression of FOXP3 (P â€‹= â€‹0.0006 and P â€‹= â€‹0.0057) in comparison with T-control group. CONCLUSIONS: Our findings show that LPS/CXB-treated DC vaccine potently modulated antitumor immune responses in a mouse BC model.


Assuntos
Neoplasias , Vacinas , Animais , Camundongos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Granzimas , Lipopolissacarídeos , Interleucina-12 , Imunidade Celular , Fator de Crescimento Transformador beta , Células Dendríticas , Vacinação , Fatores de Transcrição Forkhead
17.
BMC Infect Dis ; 23(1): 248, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072722

RESUMO

BACKGROUND: Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-ß (TGF-ß) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS: This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-ß, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS: The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-ß serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS: These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-ß- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.


Assuntos
COVID-19 , Interferon Tipo I , Neoplasias , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , SARS-CoV-2 , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Drug Res (Stuttg) ; 73(4): 213-223, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754055

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) modulate immune responses, and their immunomodulatory potential can be enhanced using inflammatory cytokines. Here, the modulatory effects of IFN-γ-licensed MSCs on expression of T cell-related chemokines and chemokine receptors were evaluated using an experimental autoimmune encephalomyelitis (EAE) model. MATERIAL AND METHODS: EAE was induced in 3 groups of C57bl/6 mice and then treated with PBS, MSCs and IFN-γ-treated MSCs. The EAE manifestations were registered daily and finally, the brain and spinal cords were isolated for histopathological and gene expression studies. RESULTS: The clinical scores were lowered in MSCs and IFN-γ-licensed MSCs groups, however, mice treated with IFN-γ-licensed MSCs exhibited lower clinical scores than MSCs-treated mice. Leukocyte infiltration into the brain was reduced after treatment with MSCs or IFN-γ-licensed MSCs compared to untreated group (P<0.05 and P<0.01, respectively). In comparison with untreated EAE mice, treatment with MSCs reduced CCL20 expression (P<0.001) and decreased CXCR3 and CCR6 expression (P<0.02 and P<0.04, respectively). In comparison with untreated EAE mice, treatment with IFN-γ-licensed MSCs reduced CXCL10, CCL17 and CCL20 expression (P<0.05, P<0.05, and P<0.001, respectively) as well as decreased CXCR3 and CCR6 expression (P<0.002 and P<0.02, respectively), whilst promoting expression of CCL22 and its receptor CCR4 (P<0.0001 and P<0.02, respectively). In comparison with MSC-treated group, mice treated with IFN-γ-licensed MSCs exhibited lower CXCL10 and CCR6 expression (P<0.002 and P<0.01, respectively), whereas greater expression of CCL22 and CCR4 (P<0.0001 and P<0.01, respectively). CONCLUSION: Priming the MSC with IFN-γ can be an efficient approach to enhance the immunomodulatory potential of MSCs.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , Animais , Camundongos , Encefalomielite Autoimune Experimental/terapia , Interferon gama , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/uso terapêutico , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linfócitos T , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL
19.
Trials ; 24(1): 129, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810107

RESUMO

BACKGROUNDS: N-acetylcysteine (NAC) has broadly been used as an anti-oxidant agent in various types of diseases. This study aimed to assess the effect of NAC on the systemic lupus erythematosus (SLE) disease activity and outcome. METHODS: In this randomized, double-blind clinical trial study, 80 SLE patients were recruited that were classified into two groups: 40 patients received NAC (1800 mg/day; 3 times per day with 8-h intervals) for 3 months and 40 patients as the control group received normal therapies. Laboratory measurements and disease activity based on the British Isles Lupus Assessment Group (BILAG) and SLE Disease Activity Index (SLEDAI) were determined before the initiation of treatment and after the study time period. RESULTS: A statistically significant decrease in BILAG (P= 0.023) and SLEDAI (P= 0.034) scores after receiving NAC for a 3-month period was observed. BILAG (P= 0.021) and SLEDAI (P= 0.030) scores were significantly lower in NAC-receiving patients compared to the control group after 3 months. The disease activity in each organ based on BILAG score after treatment indicated a significant decrease in the NAC group compared to the baseline level in general (P=0.018), mucocutaneous (P=0.003), neurological (P=0.015), musculoskeletal (P=0.048), cardiorespiratory (P=0.047), renal (P=0.025), and vascular (P=0.048) complications. Analysis indicated a significant increase in CH50 level in the NAC group after treatment compared to the baseline level (P=0.049). No adverse event was reported by the study subjects. CONCLUSIONS: It appears that the administration of 1800 mg/day NAC to SLE patients can decrease the SLE disease activity and its complications.


Assuntos
Acetilcisteína , Lúpus Eritematoso Sistêmico , Humanos , Acetilcisteína/uso terapêutico , Índice de Gravidade de Doença , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Rim , Método Duplo-Cego , Resultado do Tratamento
20.
Curr Med Chem ; 30(27): 3119-3136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36082869

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and joint damage. Systemic complications and progressive disability are burdens that lead to a significant socio-economic costs in patients with RA. Current RA biomarkers used in predicting, diagnosing, and monitoring the treatment of the disease have not been very successful. Moreover, only 60% of patients show a satisfactory response to current biological and conventional therapies. Studies on immunometabolism have suggested that dysregulated enzymes, transcription factors, metabolites, and metabolic pathways could be considered potential therapeutic targets for the treatment of RA. Factors such as the high concentration of various intermediate molecules arising from metabolism, hypoxia, lack of nutrients, and other metabolic alterations affect local immune responses and preserve a state of chronic inflammation in synovial tissues. Fortunately, in vitro and in vivo studies have shown that targeting specific metabolic pathways is associated with a decreased level of inflammation. Specifically, targeting metabolic intermediates, such as succinate or lactate, has shown promising clinical outcomes in RA treatment. These findings open an avenue for the identification of novel biomarkers for diagnosis, prognosis, and determining the success of various treatments in RA patients, as well as the discovery of new therapeutic targets.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial/metabolismo , Inflamação/metabolismo , Prognóstico , Biomarcadores/metabolismo , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...